dry benzene. The solution was stirred until the starting material disappeared, as determined by thin-layer chromatography. The crude product was purified by column chromatography using petroleum ether-benzene (9:1) and crystallized from petroleum ether-benzene (1:1) solution; m.p. 503 K.

Crystal data

$C_{28}H_{20}N_2O$	Cu $K\alpha$ radiation
$M_r = 400.46$	$\lambda = 1.5418 \text{ Å}$
Orthorhombic	Cell parameters from 25
Pbca	reflections
a = 11.188 (4) Å	$\theta = 10-25^{\circ}$
<i>b</i> = 13.672 (9) Å	$\mu = 0.608 \text{ mm}^{-1}$
c = 27.352 (2) Å	T = 293 (2) K
$V = 4183.8 (4) \text{ Å}^3$	Rectangular
Z = 8	$0.40 \times 0.18 \times 0.15$ mm
$D_x = 1.272 \text{ Mg m}^{-3}$	Yellow
D_m not measured	

 $\theta_{\rm max} = 67^{\circ}$

 $h = 0 \rightarrow 13$

 $k = 0 \rightarrow 16$

 $l = 0 \rightarrow 32$

3 standard reflections

every 100 reflections

intensity decay: <1.5%

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3728 measured reflections 3727 independent reflections 2940 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = -0.005$ $\Delta \rho_{\rm max} = 0.278 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.174$ $\Delta \rho_{\rm min} = -0.155 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.103Extinction correction: none 3727 reflections Scattering factors from 360 parameters International Tables for All H atoms refined Crystallography (Vol. C) $w = 1/[\sigma^2(F_o^2) + (0.1001P)^2$ + 0.7638P] where $P = (F_o^2 + 2F_c^2)/3$

Table 1. Selected geometric parameters (Å, °)

N1—C16	1.278 (2)	C1-C14	1.534 (3)
N1N2	1.378 (2)	C1-C15	1.562 (3)
N2—C23	1.398 (3)	C2—C7	1.394 (3)
N2—C1	1.490 (3)	C7—C8	1.476 (3)
O1—C8	1.216 (3)	C8—C9	1.479 (3)
C1—C2	1.515 (3)	C9-C14	1.390 (3)
C16—N1N2	109.6 (2)	C2-C1-C15	109.6 (2)
N1—N2—C23	118.6 (2)	C14C1C15	109.0 (2)
N1—N2—C1	112.82 (15)	C16C15C1	102.7 (2)
C23—N2—C1	125.7 (2)	N1-C16-C17	121.9 (2)
N2—C1—C2	112.0 (2)	N1-C16-C15	113.6 (2)
N2—C1—C14	111.4 (2)	C17-C16-C15	124.4 (2)
C2—C1—C14	113.7 (2)	C24C23N2	121.0 (2)
N2—C1—C15	100.26 (15)	N2-C23-C28	120.3 (2)

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP92 (Vickovic, 1994). Software used to prepare material for publication: SHELXL93 and PARST (Nardelli, 1983).

© 1998 International Union of Crystallography Printed in Great Britain - all rights reserved

SB thanks the CSIR, India, for financial support in the form of a Senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1463). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Ergin, O., Sillanpää, R. & Ezer, N. (1993). Acta Cryst. C49, 42-44.
- Ergin, O., Sillanpää, R. & Yesilada, A. (1996). Acta Cryst. C52, 1770-1772
- Ghosh, R., Lynch, V. M., Simonsen, S. H., Prasad, R. S. & Roberts, R. M. (1993). Acta Cryst. C49, 1013-1015.
- Jarboe, C. H. (1967). In Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings, edited by R. H. Wiley. Gresham: John Wiley.
- Lorand, T., Szabo, D., Foldesi, A., Parkanyi, L., Kalman, A. & Neszmelyi, A. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 481-486. Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Vickovic, I. (1994). J. Appl. Cryst. 27, 437.

Acta Cryst. (1998). C54, 630-633

Three Diphenvl Sulfones

JEYARAMAN JEYAKANTHAN,^a D. VELMURUGAN,^a K. PANNEERSELVAM,^b MANUEL SORIANO-GARCIA,^b

S. PERUMAL^c AND R. CHANDRASEKARAN^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, ^bInstituto de Quimica, UNAM, Circuito Exterior Ciudad Universitaria, Mexico DF 04510, Mexico, and ^cDepartment of Organic Chemistry, Madurai Kamarai University, Palkalai Nagar, Madurai 21, India. E-mail: crystal@giasmd01.vsnl. net.in

(Received 3 April 1997; accepted 14 November 1997)

Abstract

In 2,6-dimethylphenyl 4-nitrophenyl sulfone, C14H13-NO₄S, (I), 2,6-dimethylphenyl 4-methylphenyl sulfone, $C_{15}H_{16}O_2S$, (II), and 2-methylphenyl phenyl sulfone, $C_{13}H_{12}O_2S$, (III), the S atoms have distorted tetrahedral bonding geometry. In each compound, the phenyl rings are nearly perpendicular to each other [dihedral angles: 80.0(1) in (I), 89.6(1) in (II) and $78.9(1)^{\circ}$ in (III)].

Comment

A number of diaryl sulfides, sulfones and sulfoxides display insecticidal, antibacterial, germicidal, microbial and other important biological activities (De Benedetti et al., 1985). In each of compounds (I), (II) and (III), the phenyl rings are almost equidistant from the S atom [average C_{sp2}—S 1.779 (3) Å, range 1.768 (3)-1.791 (2) Å], which agrees well with the literature (Tiwari et al., 1984). The mean S=O distance is 1.439 Å. In all cases, the S atom is at the centre of a distorted tetrahedron. In all three structures, the phenyl-ring geometry is normal and the phenyl rings are nearly perpendicular to each other. Dihedral angles are given in Table 4. In many diphenyl sulfones (Sime & Woodhouse, 1974), the dihedral angles between the aromatic rings and the C-S-C plane are near 90°. In this study, it was found that the presence of the nitro group in compound (I) and the presence of the *p*-methyl substituent in (II) result in variations of these angles from 90° (Table 4). This phenomenon may be related to the electron-withdrawing nature of the nitro group in (I) and the slight electron-donating nature of the *p*-methyl substituent in (II). The deviation of the S atom from the plane of phenyl ring C1'-C6' is evidence for the lack of conjugation with the ring (Sime & Woodhouse, 1974).

In compound (I), the nitro group has the O=N=O structure, which can be confirmed by comparison with data in the literature (Gzella *et al.*, 1989). This nitro group is nearly coplanar with the phenyl ring to which it is attached [dihedral angle 169(1)°].

Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms (H atoms omitted).

Fig. 2. The molecular structure of (II), with 50% probability displacement ellipsoids for non-H atoms (H atoms omitted).

Fig. 3. The molecular structure of (III), with 50% probability displacement ellipsoids for non-H atoms (H atoms omitted).

Experimental

Compounds (I), (II) and (III) were prepared by the oxidation of the corresponding sulfides or sulfoxides with an excess of hydrogen peroxide in acetic acid (Chandrasekaran, 1991). Single crystals were obtained from ethanol by slow evaporation.

Compound (I)

Crystal data $C_{14}H_{13}NO_4S$ $M_r = 291.31$ Monoclinic $P2_1/n$ a = 11.598 (1) Å b = 10.959 (1) Å c = 12.148 (1) Å $\beta = 117.41 (1)^\circ$ $V = 1370.7 (2) Å^3$ Z = 4 $D_x = 1.412 \text{ Mg m}^{-3}$ D_m not measured

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 21 reflections $\theta = 15-30^{\circ}$ $\mu = 2.2 \text{ mm}^{-1}$ T = 293 (2) K Tabular $0.45 \times 0.40 \times 0.30 \text{ mm}$ White

C14H13NO4S, C15H16O2S AND C13H12O2S

Data collection w/2A. scans Enraf-Nonius CAD-4 1660 reflections with diffractometer $I > 2\sigma(I)$ $\omega/2\theta$ scans $R_{\rm int} = 0.064$ Absorption correction: $\theta_{\rm max} = 56.66^{\circ}$ refined from ΔF $h = -12 \rightarrow 12$ (DIFABS; Walker & $k = 0 \rightarrow 11$ Stuart, 1983) $l = 0 \rightarrow 13$ $T_{\rm min} = 0.325, T_{\rm max} = 0.513$ 3 standard reflections Refinement 2349 measured reflections every 200 reflections 1788 independent reflections intensity decay: <3% Refinement on F^2 $\frac{R[F^2 > 2\sigma(F^2)]}{wR(F^2)} = 0.045$ Refinement S = 0.921 $\Delta \rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.38 \text{ e } \text{\AA}^{-3}$ Refinement on F^2 1822 reflections $R[F^2 > 2\sigma(F^2)] = 0.037$ 215 parameters $wR(F^2) = 0.113$ Extinction correction: S XL93 (Sheldrick,

m(1) = 0.115	Exhibition concellon.
S = 0.613	SHELXL93 (Sheldrick,
1788 reflections	1993)
234 parameters	Extinction coefficient:
All H atoms refined	0.0080 (13)
$w = 1/[\sigma^2(F_o^2) + (0.121P)^2]$	Scattering factors from
+ 1.59P]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = 0.010$	

Table 1. Selected	geometric	parameters	(Å,	°)	for	(I))
-------------------	-----------	------------	-----	----	-----	-----	---

S02	1.437 (2)	NO3	1,228 (3
S01	1.441 (2)	N—C4′	1.480 (4
SC1	1.791 (2)	C2C7	1.517 (4
S-C1'	1.788 (3)	C6—C8	1.501 (5
N—04	1.231 (3)		
02-S01	117.81 (13)	C6C1S	117.2 (2)
02—S—C1	109.33 (12)	C3C2C7	116.6 (3
01-S-C1	110.06 (12)	C1-C2-C7	126.2 (2)
02SC1'	108.36 (12)	C5-C6-C8	117.1 (3
01—\$—C1′	105.53 (12)	C1-C6-C8	125.6 (3
C1-S-C1'	104.92 (11)	C6'-C1'-S	119.7 (2)
04—N—O3	124.2 (3)	C2'-C1'-S	118.7 (2)
04—N—C4'	117.6(3)	C3'-C4'N	118.0 (3)
03NC4'	118.2 (3)	C5'-C4'-N	118.7 (2)
C2-C1-S	121.0(2)		

Cu $K\alpha$ radiation

Cell parameters from 21

 $\lambda = 1.54178 \text{ Å}$

reflections

T = 293 (2) K

 $0.4 \times 0.3 \times 0.2$ mm

1616 reflections with

 $I > 2\sigma(I)$

 $\theta = 15 - 30^{\circ}$ $\mu = 2.0 \text{ mm}^{-1}$

Tabular

Colourless

Compound (II)

Crystal data C15H16O2S $M_r = 260.34$ Monoclinic C2/ca = 20.339 (7) Å b = 11.024 (4) Å c = 15.220 (7) Å $\beta = 126.80 (2)^{\circ}$ $V = 2732.6 (19) \text{ Å}^3$ Z = 8 $D_x = 1.266 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 diffractometer

wize seams
Absorption correction:
refined from ΔF
(DIFABS; Walker &
Stuart, 1983)
$T_{\rm min} = 0.518, T_{\rm max} = 0.666$
2257 measured reflections
1822 independent reflections

$l = 0 \rightarrow 16$ 3 standard reflections every 200 reflections intensity decay: <4%

 $R_{\rm int} = 0.037$

 $k = 0 \rightarrow 11$

 $\theta_{\rm max} = 56.63^{\circ}$

 $h = -22 \rightarrow 22$

H atoms fixed (H atoms on C7' riding)

 $w = 1/[\sigma^2(F_o^2) + (0.0904P)^2]$ + 3.072P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = -0.001$ $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected geometric parameters (\AA°) for (II)

	8	p a)]0. (11)
SO2	1.434 (2)	C2C7	1.495 (5)
S01	1.439 (2)	C6C8	1.512 (5)
S-C1'	1.771 (3)	C4'—C7'	1.511 (5)
S—C1	1.781 (3)		. ,
02S01	117.01 (15)	C3—C2—C7	117.0(3)
02SC1'	107.22 (14)	C1C2C7	125.7 (3)
01—S—C1′	108.32 (14)	C1-C6-C8	126.1 (3)
02SCI	109.99 (15)	C5-C6-C8	117.0 (3)
01SC1	109.80 (14)	C2'-C1'-S	120.8 (2)
CI'—S—CI	103.61 (13)	C6'-C1'-S	118.6 (2)
C6C1S	121.2 (2)	C5'—C4'—C7'	120.8 (4)
C2-C1S	117.0(2)	C3'—C4'—C7'	121.1 (4)
			· · · ·

Compound (III)

Crystal data
$C_{13}H_{12}O_2S$
$M_r = 232.29$
Monoclinic
$P2_1/c$
a = 12.360 (5) Å
b = 8.246 (4) Å
<i>c</i> = 11.615 (7) Å
$\beta = 103.74 (3)^{\circ}$
$V = 1149.9 (10) \text{ Å}^3$
Z = 4
$D_x = 1.342 \text{ Mg m}^{-3}$
D_m not measured

Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: refined from ΔF (DIFABS; Walker & Stuart, 1983) $T_{\rm min} = 0.391, T_{\rm max} = 0.625$ 1936 measured reflections 1832 independent reflections

Cu $K\alpha$ radiation $\lambda = 1.54178 \text{ Å}$ Cell parameters from 21 reflections $\theta = 13 - 28^{\circ}$ $\mu = 2.3 \text{ mm}^{-1}$ T = 293 (2) K Tabular $0.4 \times 0.3 \times 0.2$ mm Colourless

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.033$
$R[F^2 > 2\sigma(F^2)] = 0.057$	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.162$	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.186	Extinction correction:
1832 reflections	SHELXL93 (Sheldrick,
182 parameters	1993)
H atoms fixed (H atoms on	Extinction coefficient:
C7 riding)	0.006 (2)
$w = 1/[\sigma^2(F_o^2) + (0.0942P)^2]$	Scattering factors from
+ 0.5159 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)

Table 3. Selected	geometric	parameters (Ă,	°) for	(III)
-------------------	-----------	--------------	----	--------	-------

S01 S02 SC1'	1.436 (2) 1.444 (2) 1.768 (3)	SC1 C2C7	1.777 (3) 1.502 (4)
01—S—02	118.41 (14)	C6—C1—S	115.9 (2)
01—S—C1'	108.29 (13)	C2—C1—S	123.1 (2)
02—S—C1'	107.43 (13)	C3—C2—C7	118.7 (3)
01—S—C1	110.34 (13)	C1—C2—C7	125.4 (3)
02—S—C1	106.90 (13)	C6'C1'S	119.2 (2)
C1′—S—C1	104.58 (11)	C2'C1'S	119.9 (2)

Table 4. Selected dihedral angles (°) for (I), (II) and (III)

	Ar/Ar	C—S—C/C1–C6	C—S—C/C1′–C6′
(1)	80.0(1)	108.7 (1)	63.3 (1)
(II)	89.6 (1)	110.4 (1)	120.9 (1)
(III)	78.9 (1)	95.8 (1)	82.6 (1)

For all compounds, data collection: *SDP* (Frenz, 1978); cell refinement: *SDP*; data reduction: *SDP*; program(s) used to solve structures: *SHELXS*86 (Sheldrick, 1985); program(s) used to refine structures: *SHELXL*93 (Sheldrick, 1993); molecular graphics: *ORTEP*92 (Vickovic, 1994); software used to prepare material for publication: *PARST* (Nardelli, 1983).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1058). Services for accessing these data are described at the back of the journal.

References

- Chandrasekaran, R. (1991). Studies on Organic Sulfur Compounds. PhD thesis, Madurai Kamaraj University, India.
- De Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527-1532.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.
- Gzella, A., Wrzeciono, U., Dudzinska-Usarewicz, J. & Borowiak, T. (1989). Acta Cryst. C45, 642-644.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sime, J. G. & Woodhouse, D. J. (1974). J. Cryst. Mol. Struct. 4, 269–285.
- Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.
- Vickovic, I. (1994). J. Appl. Cryst. 27, 437.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1998). C54, 633-635

9-(4-Methoxyphenyl)-10-phenyl-3,4,6,7,9,10hexahydro-1,8(2*H*,5*H*)-acridinedione

V. K. GANESH,^{*a*} S. BANUMATHI,^{*a*} D. VELMURUGAN,^{*a*} N. RAMASUBBU^{*b*} AND V. T. RAMAKRISHNAN^{*c*}

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, ^bDepartment of Oral Biology and Dental Research, School of Dental Medicine, State University of New York, Buffalo, NY 14214, USA, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Madras 600 025, India. E-mail: crystal@giasmd01.vsnl.net.in

(Received 6 August 1996; accepted 17 November 1997)

Abstract

In the title compound, $C_{26}H_{25}NO_3$, the central ring adopts a distorted boat conformation and the outer rings adopt half-chair conformations. The molecule is stabilized by $C-H\cdots O$ -type hydrogen bonds.

Comment

The interactions of acridine with DNA are generally known to be partly responsible for their biological activities (Neidle, 1979). Acridines of the same type as the title compound, (I), have been observed to fluoresce well as laser dyes in alcohol solvents (Selladurai *et al.*, 1990).

The bond lengths in the pyridine ring range from 1.348 (3) to 1.511 (3) Å and show the respective greater or lesser degree of single- or double-bond character as predicted from comparisons with related acridine structures (Selladurai *et al.*, 1989, 1990; Sivaraman *et al.*, 1994, 1996). The C—N distances in the acridinyl ring have an average value of 1.395 (5) Å and the mean C—N—C angle is 119.8 (3)°. These values agree well with those for related acridinyl derivatives (Chu & Van der Helm, 1977).

The ketone bond lengths C6—O6' and C10—O10' of 1.227 (3) and 1.229 (3) Å, respectively, are in agreement with values observed for related structures (Dideberg et